DANIEL SLOUGHTER

ALGORISMUS IN GKS 1812 4to

Transcription and Translation

Introduction

The Algorismus is an Old Norse prose translation of the Carmen de Algorismo of Alexander of Villedieu (c. 1170-c. 1240). The two earliest witnesses to this translation are found in AM 544 4to, a part of Hauksbók, and GKS 1812 4to. These versions are very close to one another and, possibly, to the original, perhaps being only once or twice removed. ${ }^{1}$ Notwithstanding the similarities, the orthography and context of the copy in GKS 1812 is notably different from that of the Hauksbók copy. Whereas previous transcriptions of the Algorismus have been based on the version in Hauksbók, this paper provides a transcription of the Algorismus as it appears in GKS 1812, as well as an English translation.

The Carmen de Algorismo is a rendering, in Latin hexameter, of the techniques for working with the Indo-Arabic system of writing numbers. ${ }^{2}$ It is itself a descendant of twelfth-century Latin translations of a ninthcentury Arabic treatise written by Muḥammed ibn Mūsā al-Khwārizmī (c. $780-$ c. 850). ${ }^{3}$ This work of al-Khwārizmī, known by its Latin title, De Numero Indorum, introduced Western Europe to the techniques of arithmetic which came to be referred to as the Indian calculus or algorism (derived from the author's toponym). Written in the first half of the thirteenth century, the Carmen de Algorismo helped spread the methods of

[^0]the Indian calculus widely throughout Western Europe. ${ }^{4}$ It describes the methods, or algorithms, for the operations of addition, subtraction, duplation (that is, the doubling of a number), mediation (that is, the halving of a number), multiplication, division, and the extraction of both square and cube roots. To this the Old Norse Algorismus adds a section on a geometric progression between the cubes 8 and 27 , connecting the sequence $8,12,18$, 27 with the four elements of earth, water, air, and fire. The latter is an echo of a theme which dates back to at least the Timaeus of Plato. Although widely discussed in neoplatonic writings during late antiquity, as well as during the revival of platonism in the High Middle Ages, the connection between this geometric progression and the four elements has not been found in any other known versions of the Indian calculus. 5

Numerous scholars have analyzed the text of the Old Norse Algorismus and, in particular, explicated the algorithms which it presents. Although similar to our modern methods for arithmetic, the presentation of these algorithms in the Algorismus, typically given without examples, is often obscure. In recent years, Kristín Bjarnadóttir and Bjarni V. Halldórsson have written extensively on the text itself and comparisons between the manuscripts in which it appears, ${ }^{6}$ Otto Bekken has written on the historical and educational value of studying old arithmetical texts such as the Algorismus, ${ }^{7}$

4 Suzan Rose Benedict, A Comparative Study of the Early Treatises Introducing into Europe the Hindu Art of Reckoning (Concord: The Rumford Press, 1914), 12; André Allard, "The Influence of Arabic Mathematics in the Medieval West," Encyclopedia of the History of Arabic Science, ed. Roshdi Rashed, vol. 2 (London: Taylor \& Francis, 1996), 523-24.
5 See, for example, William of Conches, Guillelmi de Conchis: Glosae Super Platonem, ed. Édouard A. Jeaneau (Turnhout: Brepols, 2006), 110-11. For a discussion of the sequence itself in the context of the Indian calculus, without reference to the four elements, see, for example, Petri Philomeni de Dacia in Algorismum Vulgarem Johannis de Sacrobosco Commentarius, ed. Maximilianus Curtze (Copenhagen: A. F. Høst \& Fil. Bibliop. Reg., 1897), 74-75. For a more recent edition, see Petrus de Dacia, Petri Philomenae de Dacia et Petri de S. Audomaro Opera quadrivialia, ed. Fridericus Saaby Pedersen (Copenhagen: Societas Linguae \& Litterarum Danicarum, 1983).
6 See, for example, Kristín Bjarnadóttir and Bjarni V. Halldórsson, "Ritgerðin Algorismus - samanburður handrita," Vísindavefur: Ritgerðasafn til heiðurs Porsteini Vilhjálmssyni sjötugum 27. september 2010 (Reykjavík: Hið íslenska bókmenntafélag, 2010) and "Algorismus: Hindu-Arabic Arithmetic."
7 See, for example, Otto B. Bekken, "Algorismus of 'Hauksbók': An Old Norse Text of 1310 on Hindu-Arabic Numeration and Calculation" (Agder: Agder distriktshøgskole, 1986).
and Abdelmalek Bouzari has detailed the origins of the Indian calculus and its path from Baghdad to Iceland. ${ }^{8}$

The Manuscripts

A complete copy of the Algorismus appears in three manuscripts: in addition to the copies in GKS 1812 4to, folios $13 \mathrm{v}-16 \mathrm{v}$, and AM 544 4to, folios $90 \mathrm{r}-93 \mathrm{r}$, there is a copy in AM 685 d 4 to, folios $24 \mathrm{v}-29 \mathrm{r}$. A fragment of the text appears in AM 736 III 4to, folios $4 \mathrm{r}-4 \mathrm{v}$, as well. AM 544 may have been copied between 1306 and 1308.9 GKS 1812 is a composite manuscript. Written over a length of time stretching from the twelfth to the fourteenth centuries, it consists primarily of computational and related texts, along with maps, diagrams, and illustrations. ${ }^{10}$ It is traditionally divided into four sections, each identified with a different scribe. The section which contains the Algorismus has been dated to the latter part of the first half of the fourteenth century and so is not much younger than the Hauksbók copy. ${ }^{11}$ The other two copies are significantly younger: AM 685 d is most likely from the second half of the fifteenth century, ${ }^{12}$ and AM 736 III is thought to be from the middle of the sixteenth century. ${ }^{13}$ Kristin Bjarnadóttir and Bjarni V. Halldórsson have argued that the copies of the Algorismus in AM 544 and GKS 1812 are only once or twice removed from the same original, while the copies in AM 685 and AM 736 are drawn in part from the same stem but are significantly further from the original. ${ }^{14}$

8 Abdelmalek Bouzari, "The Calculus of Al-Khwārizmī," A World in Fragments: Studies on the Encyclopedic Manuscript GKS 1812 4to.
9 Gunnar Harðarson and Stefán Karlsson, "Hauksbók," Medieval Scandinavia: An Encyclopedia, eds. Phillip Pulsiano and Kirsten Wolf (New York: Routledge, 2016), 271-72.
10 Gunnar Harðarson, "Medieval Encyclopedic Literature and Icelandic Manuscripts," A World in Fragments: Studies on the Encyclopedic Manuscript GKS 1812 4to, 27-29.
11 Haraldur Bernharðsson, "Scribes and Scribal Practice in GKS 1812 4to," A World in Fragments: Studies on the Encyclopedic Manuscript GKS 1812 4to, 63.
12 "AM 685 d 4to," ONP: Ordbog over det norrøne prosasprog (Copenhagen: Den Arnamagnæanske Kommission), https://onp.ku.dk/onp/onp.php?m135.
13 "AM 736 III 4to," ONP: Ordbog over det norrøne prosasprog (Copenhagen: Den Arnamagnæanske Kommission), https://onp.ku.dk/onp/onp.php?m136.
14 Kristín Bjarnadóttir and Bjarni V. Halldórsson, "The Norse Treatise Algorismus," 75, and "Algorismus: Hindu-Arabic Arithmetic in GKS 1812 4to," 189.

The Old Norse translation of the Algorismus was edited by P.A. Munch ${ }^{15}$ in 1848 and Finnur Jónsson and Eiríkur Jónsson ${ }^{16}$ in 1892-96. Both of these editions were based on the copy in Hauksbók, which has subsequently formed the basis for further study of the text. This copy is attributed to an Icelandic scribe, often referred to as "the first Icelandic secretary," in the employ of Haukr Erlendsson. ${ }^{17}$ The Algorismus appears in the manuscript between two sagas, with Fóstbroedra saga preceding it and Eiríks saga rauða following.

In contrast to the context of the copy in AM 544, the Algorismus in GKS 1812 appears immediately after a diagram illustrating some inscribed geometrical figures and precedes a short passage describing the division of a Latin unit of measurement, the as, into fractional parts. The leaves of the manuscript measure 210 mm by $140 \mathrm{~mm} .{ }^{18}$ Folios 13 v through 16 v have between thirty-two and thirty-five lines per page. The copy is attributed to a scribe who was most likely either Norwegian or at least trained in Norway, although he often uses Icelandic spellings, such as blutum, oiofnn, henni, bin, and binum (rather than the Norwegian forms lutum, uiofn, ${ }^{19}$ henne, ${ }^{20}$ in, and inum), and writes in a cursive style compatible with Icelandic script of the time. Haraldur Bernharðsson conjectures that this scribe "may have been trained in the scribal milieu associated with the royal chancery and St. Mary's Church in Oslo in the first half of the fourteenth century." ${ }^{21}$ There are a number of arguments to support this claim. For example, Haraldur points to the scribe's use of the ligature " ∞ " for " $æ$ " as typical for a scribe working in that setting. ${ }^{22}$ Moreover, the consistent distinction between

15 P. A. Munch, "Algorismus, eller Anviisning til at kjende og anvende de saakaldte arabiske Tal, efter Hr. Hauk Erlendssons Codex," Annaler for nordisk oldkyndighed og historie (1848): 353-75.
16 Hauksbók, eds. Finnur Jónsson and Eiríkur Jónsson (København: Thieles Bogtrykkeri, 1892-96).
17 "AM 544 4to: Hauksbók; Iceland and Norway, 1290-1360," bandrit.is (National/University Library of Iceland), https://handrit.is/en/manuscript/view/en/AMo4-0544; Otto B. Bekken and Marit Christoffersen, "Algorismus," Medieval Scandinavia: An Encyclopedia, 8.
18 "GKS 1812 4to, 13v-16v," handrit.is (National / University Library of Iceland), https:// handrit.is/en/manuscript/view/is/GKSo4-1812.
19 Although he uses this form once, in $14 \mathrm{r} / 27$.
20 Although he uses this form once, in $14 \mathrm{r} / 31$.
21 Haraldur Bernharðsson, "Scribes and Scribal Practice in GKS 1812 4to," 112.
22 Op.cit., 110. Here Haraldur cites Eivind Vágslid [=Vågslid], Norske logmannsbrev frå millomalderen: Ei skrifthistorisk etterrøking av logmannsbrev frå Oslo, Uppland, Skien, Tunsberg,
the vowels " \propto " and " 0 " makes it highly unlikely that it was written by an Icelandic scribe of this time. ${ }^{23}$ Additionally, the scribe's use of " r " with a superscript tittle above it to denote "ir", as in "fingr" for "fingir" (that is, fingr), reflects "the regular notation in documents written in the period 1320-30 at the royal chancery in Oslo and the closely associated St. Mary's Church." ${ }^{24}$ The use of the " ∞ " ligature is seen in such words as nest and beði, written as nooft and booðe in GKS 1812 but neft and będi in Hauksbók. Other Norwegian influences are seen in words such as hleypr, written loypir in GKS 1812 but bleypr in Hauksbók, as well as words in which g is written $g h$, such as merkingh in GKS 1812 for merking in Hauksbók. However, the Norwegian influence gives us no indication as to where the text was composed. Moreover, the scribe who copied the Algorismus collaborated with the scribe who copied another section of the manuscript, and the evidence points to the latter scribe having been Icelandic. ${ }^{25}$

The Transcription

The following transcription of the Algorismus from GKS 1812 4to is based on the black-and-white images at the Institut for Nordiske Studier og Sprogvidenskab in Copenhagen which were taken in 1982. ${ }^{26}$ Color images are now available at bandrit.is, a digital library at Landsbókasafn Íslands Háskólabóksafn in Reykjavík; however, all but the last two of these images

[^1]have significant areas where the background is very dark, making it very difficult, and often impossible, to read the text itself. ${ }^{27}$

The transcription follows the guidelines of Menota at the diplomatic level. ${ }^{28}$ As such, the transcript keeps the original punctuation, expands abbreviations, indicates certain types of errors, and distinguishes between the forms of letters only when they might have a phonological difference. In particular, a scribal addition above the line is denoted 'text', a scribal addition in the margin is denoted, text, and a scribal correction is denoted |text|. A dittography is denoted \mid text \mid and an addition by the editor is denoted \langle text \rangle. Text that is illegible but is identifiable from the context is denoted [text]. The letters " f " and " β ", " t " and " τ ", and " r " and " 2 " are not distinguished. The letters " d " and " ∂ " are not distinguished but are distinguished from " ∂ " although it is frequently difficult to ascertain the difference between the latter two. The letters " u " and " v " are distinguished although the scribe appears to use them interchangeably. Consonant ligatures for "pp" and "kk" are expanded silently. The letters " P " and " s " are distinguished since a positional difference can be observed in their use. Typically, " f " is seen in frontal and medial positions and " s " in final positions, but there are exceptions. For examples, we see a final " f " in uerpilf in $13 \mathrm{v} / 27$ and $15 \mathrm{v} / 18$ and 20 , and liof in $16 \mathrm{v} / 6$, while subdupli in $15 \mathrm{r} / 33$ and sem in $16 \mathrm{v} / 6$ both have a frontal " s ". Additionally, an initial capital " s " is written " S ", as in Setta in 13v/24 and Seaunda in 13v/25. Abbreviation symbols are expanded with italics, suspensions are expanded in parentheses, small capitals are not expanded, and all accents and punctuation are shown. For this transcript, we have expanded the "er/ir" abbreviation with "ir". So, for example, "fior" is expanded as "fiorir" and "fing'r" is expanded as "fingir". We have indicated folio and line numbering within the text and have divided the text into sections as indicated by the scribe (either by a drawing of a hand pointing to the right, blank space, or the use of a large capital letter).

We have transcribed the Medieval ghubār numerals, that is, $\boldsymbol{\infty}, \mathbf{9}, \mathbf{8} \wedge$, $\mathfrak{F}, \mathbf{4}, \stackrel{9}{2}, 7, \mathbf{L}$, in the modern form, namely, $0,9,8,7,6,5,4,3,2,1$. This

27 "GKS 1812 4to, $13 \mathrm{v}-16 \mathrm{v}$," bandrit.is. The enhanced readability of the black-and-white photographs may indicate that the photographer used ultraviolet illumination, although no special technology is noted in the registration.
28 "Menota Handbook 3.0," Menota Nordic Text Archive (Menota, 2019), https://www. menota.org/HB3_ch4.xml.
transcription is consistent with the diplomatic edition principle of ignoring orthographic differences that have no consequences in interpreting the text. Yet it has the disadvantage of making the text look more familiar to us than it really is.

The Translation

The translation tries to be as literal as possible while still being rendered in smooth English. The line between "literal" and "smooth" is not a clear one, yet it is clear that a literal word-for-word translation would make the text more opaque to an English reader than it really is, while an overly polished translation would make the text read much like a modern primer in arithmetic. ${ }^{29}$

The text refers to each of $0,1,2,3,4,5,6,7,8,9$ as a stafr, which we have translated as "character." As numbers, each of 2 through 9 is referred to either as a fingr or a figura, which we render as "digit." A multiple of 10 is called a liðr, which we render here as "article." The words fingr and liðr are literally "finger" and "joint," and are themselves literal translations of the Latin digitus and articulus. These words are indicative of the ancient form of calculating with fingers. ${ }^{30}$

In some places we have translated leiða as "to multiply," which, although not literal, is indicted by the context and seems to be a direct translation of ducere in the Latin versions. The text refers to subtraction in two ways, initially as afdráttr, a literal translation of the Latin subtrahere ("to draw off"), but most frequently as taka af. We have translated the latter as "take away"; although it is a less formal way to say "subtract" in English, it is literally correct and maintains the distinction between taka af and afdráttr. Moreover, it is analogous to the use of the Latin demere ("to take away" or "subtract") in the Carmen de Algorismo.

The Algorismus calls the symbol for nothing, a cifra. The various versions of the Indian calculus refer to this symbol in numerous ways. For example, in his commentary on the Algorisumus Vulgaris of John

[^2]of Sacrobosco (c. 1165-c. 1256), Peter of Dacia (c. 1250-c. 1310) wrote: "Decima vero o dicitur teca, circulus, vel cyfra, vel figura nichili, quoniam nichil significat." ${ }^{31}$ [But the tenth, 0 , is called teca, circle, or cipher, or figure of nothing, because it signifies nothing.] Peter supposes the word teca, or theca, to be derived from the name of an iron used to brand thieves, but it may simply come from its resemblance to the Greek letter $\theta .{ }^{32}$

We are aware of several translations of the Old Norse Algorismus into modern European languages. Munch provided a translation into Danish along with his edition; ${ }^{33}$ Otto Bekken and Marit Nielsen translated the text into Norwegian; 34 and Kristín Bjarnadóttir has published a version in modern Icelandic orthography. ${ }^{35}$ All of these were based on the copy in Hauksbók. We are not aware of any previous translations into English of any versions.

Conclusion

The intent of this paper is two-fold: first, to provide a transcript of the second of two early witnesses to the Old Norse Algorismus and, second, to present an English translation. Although normalized editions of the versions of the Algorismus in Hauksbók and GKS 1812 would differ in only a few places, a diplomatic transcript of the latter version is of historical interest in underscoring the distinctiveness of the text and in illustrating the variance in fourteenth-century Icelandic script. In addition, the English translation will make this important work more easily accessible to the international research community.

31 Petri Philomeni de Dacia in Algorismum Vulgarem Johannis de Sacrobosco Commentarius, 2.
32 David Eugene Smith and Louis Charles Karpinski. The Hindu Arabic Numerals (Boston: Ginn \& Company, 1911), 61.
33 Munch, "Algorismus, eller Anviisning til at kjende og anvende de saakaldte arabiske Tal, efter Hr. Hauk Erlendssons Codex."
34 Otto B. Bekken, Marit A. Nielsen, and Steinar Thorvaldsen, Algorismus i Hauksbok: En norrøn regnetekst fra 1300-tallet (Tromsø: Eureka Digital, 2010).
35 Kristín Bjarnadóttir, "Algorismus: Fornt stærðfræðirit í íslenskum handritum," NETLA (2004), http://wayback.vefsafn.is/wayback/20201017180549/https://netla.hi.is/greinar/2004/001/index.htm.

Algorismus in GKS 1812 4to, folios 13v-16v Diplomatic Edition

[13v] Lift beffi heitir algorifmus. hana funðo fyft índuerfkir menn me ${ }^{36}$ tíu ftofum $\left.\right|^{2}$ er fua eru ritadir $0 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$ hín fyftí fafuir merkir ${ }^{3}$ eín \mathfrak{j} fyfta ftað. En annar tua. En priði. pría. Ok huer efttir pui fem $\left.\right|^{4}$ fkipadir er alt til hins fiðarfta ${ }^{37}$ er cifra heitir. ok fkaltu peffa ftafuí fra ${ }^{5}$ hỏgre hende upp hefuia ok rita till vínftri hanðar fem ebreifku. $\left.\right|^{6}$
,h., Hver beffi ftafuir merkir fik einfalligha í fyrfta ftað En ef han er j ${ }^{7}$ aðrum ftad pa merkir han .x. finnum fealfuan fik. Ok j huern ftað er pu ${ }^{8}$ fetir nokkora beffa figuru. ba merkir hon avalt tíu hlutum meira j beim $\mid 9 \mathrm{fta}$ er till uinftri hanðar veít. helðir en í noofta ftad adr. Cifra merkir $\left.\right|^{10}$ ekki fir fik en hon gerír ftað. ok gefuir adrum figurum merkingh $\left.\right|^{11}$
,.b. ar nooft hobyrir bat till at vita prenna grein ftafuanna ok allrar to ${ }^{12} \mathrm{lu}$. pui at aul tala mínne en tíu. heitir fingir. En fu tala oll er tegum $/^{13}$ gengnir. heitir lið ir. huart fem hon er meiri eðir mínni. En fu tala er alt $\left.\right|^{14} \mathrm{e} r$ faman liðir ok fingir. heitir famfett tala. ${ }^{15}$
,E., f pu uilt rita nokkora tolu. pa hyg. pu at. ef pat er fíngir. ok ríta ${ }^{16}$ j fyfta ftad eina hueria figuru flika fem parf a peffa leíð .8. En ef pu uilt $\left.\right|^{17}$ lid. rita. pa fettu cifru firir figuru. a peffa lund .70. Vilt pu famfetta ${ }^{18}$ tolu rita. pa fettu figuru ${ }^{38}$ firir lid. fem her .65. $\left.\right|^{19}$
,h., ueria tolu er pu ritar pa er hon íofnn ef tígum gengnir. edir jafnn fíngir er umfram ${ }^{20}$

En oll tala er oiof $n \mathrm{n}$. ef oiafnn fingir er umfram Jafnnir fingir eru fiorír. $\left.\right|^{21}$ 2.4.6.8. En oiafnnir. aðrir fiorir .3.5.7.9. En ein ${ }^{39}$ er huarki puí at $\mid{ }^{22}$ han er eigi tala heldir uphaf ${ }^{40}$ allrar tolu. ${ }^{41}$
J. feau ftaðí er fkípt $\left.\right|^{23}$ greínum beffar liftar. Heitir hin fyfta uidir laghningh. Annur afdrattir $\left.\right|^{24}$ Priðia tuefaldan Fiorda helmínga fkiptí. Fimta margfaldan Setta ${ }^{25}$ fkíptíngh. Seaunda at taka rot vndan. oc er fu

36 13v/1 með Hauksbók has ok skipvdv med.
37 13v/4 fiðarfta] there is an "ir" abbreviation mark over the "r".
38 13v/18 figuru] Hauksbók has fingr (digit), which is correct.
39 13v/21 ein] possibly ein; Hauksbók has einn.
40 13v/22 uphaf] the " h " appears to have an abbreviation symbol.
41 13v/22 tolu] white space may have been left for the insertion of a band pointing to the right to indicate a new section, as seen in line 30 below. In contrast, Hauksbók has section titles.
með tueimir greínum $\left.\right|^{26}$ Annur er at taka rot vndan firir fkỏyttri tolu. En onnur greín er $\left.\right|^{27}$ bat at ðragha rot undan atthyrndrí tolu peirrí er uerpilf uoxt hefuir ${ }^{28}$
,F, ra enní hỏgre hendi fkalt pu af taka ok vidlegía ok fkipta j helmin $\left.\right|^{29}$ ga. En fra uinftri hendi fkal pu tuefalda ok fkipta ok margfalda ${ }^{30}$ Oc fva dragha vndan rot huaratueggio. 定

Ef pu uilt adra tolu ${ }^{31}$ uid adra leggía. pa rita ifuir uppí ena meiri toluna. oc fet ena ${ }^{132}$ mínne tolu iamfram till ennar hỏgre handar. Ok leg pa Fíguru [14r] fyrft up uid toluna er utarft er til hỏgre handar oc ef fu tala oll faman $\left.\right|^{2}$ er fingir. pa rita han j fama ftað. En ef talan uerdir famfett pa rita $\left.\right|^{3} j$ fyrfta ftad fingir. En legh uidir lidin pa toluna fem j noofta ftad er adir $\left.\right|^{4}$ En ef lidir uerdir af uidlagning. j fyrfta ftad ba rita par cifru: En legh $\left.\right|^{5}$ lidin uid pa tolu er nooft ftendir ef par er nokkur tala ella ríta han par $\left.\right|^{6}$ ein faman. En ef par er cifra pa tak hana brot. En fet lidin par niðir ${ }^{7}$ Legh fidan aðrar figurur uid at flikum hootte.

Ef pu uilt adra tolu $\left.\right|^{8}$ af annarre taka. pa rita tuennar tolur. fem i uidirlagningh. ok fet íam| ${ }^{9}$ nan ena minne tolu undir. ellighar iamfna. pa tak pu af enne fyrftu $\left.\right|^{10}$ figuru pa tolu fem vndir ftendir ef pat ma. oc rita ef nokkot er efttir j fama ${ }^{11}$ ftad. ella fet par cifru. En ef pu mat eighi ena fyrftu figuru af taka ${ }^{12}$ oc er fu tala meiri er undir ftendir. pa tak pu ein af nooftu figuru. oc gae ${ }^{13}$ perff. at hon geri tio j fyfta ftadenum. Tak pa af beim alla tolu pa fem $\left.\right|^{14}$ undir er. ok i fama ftad pat fem af lobypir. En ef cifrur ftanda uppí ifuir ${ }^{15}$ ba tak ein af beirri figuru er nooft ftendir cifrum ok rita nio. Par fem cifrum ${ }^{42}$. $\left.\right|^{16}+$ ftoðo $\|^{\text {'voru'. alt par till er pu kemir } j \text { pan ftad er pu uilt af }}$ taka. Ok tak pu ${ }^{17}$ af beim tiu fem parf. ok rita j fama ftad pat er lifnnar.

Ef pu uilt $\left.\right|^{18}$ tuefalða nokkora tolu. pa rita fyrft flika tolu fem peer likar. Par nooft $\mid{ }^{19}$ tuefalda pu. ba figuru er meft ueit till uinftri handar ok rita j noofta ftad ${ }^{20}$ bat er af lobypir fua fem juidirlagníngh en ef femis ftendir ifuir uppi $\left.\right|^{21}$ j y $\begin{aligned} & \text { fta } f t a d ~ p a ~ l e g h ~ u i d ~ e i n . ~ P u i ~ a t ~ p a r ~ u a r ~ a d i r ~ i o m f n ~\end{aligned} 3$ tala er j helminga uar fkift44 |22

[^3]En ef pu uilt helmíngh af taka rita flika tolu fem pu uilt ${ }^{23}$ ok tak af helmmingh enní fyftu figuru ef hon er iofn. En ef hon uar oiofn pa ${ }^{24} \mathrm{fkípt}$ j helmínga pui er af einum lỏypir ok tak vp ein en rita ifuir uppi pan $\left.\right|^{25} \mathrm{ftaf}$ er helmngh ${ }^{5}$ huerslutar merkir ok uer kollum femís ok fua er gior . \uparrow. en fet ${ }^{26}$ cifru j ftadin. ${ }^{46}$ par nooft tak af annarre figuru helming at fama hootte ef ${ }^{27}$ hon er iofn. En ef hon er uiofn. pa tak af helmíngh af puí er iamt er. oc 1^{28} af up pan ok ger af honum fim j noofta ftad pui at pat er helmingir af $\left.\right|^{29}$ tío En ef jadrum ftad ftendir ein ba tak han up ok rita fim j noofta ${ }^{30}$ ftad. en fet par cifru. fem han ftoð. Ekki gerir cifra nema nokkur $\mid{ }^{31}$ figura ftande till uinftri handar henne. Far fidan fram at flikum hootte ${ }^{32}$ huerffu margar fem Figurur ero.

Ef per likar at margfalda [14v] ,adra, toluna jadra. rita tuennar raðir ftafuanna með peim hoottí at hín $\left.\right|^{2}$ yzfta figura beirrar tolu er pu marghfaldar ftandí undír fyfta ${ }^{3}$ ftaf ennar ỏfre tolu. en til vínftri handar allar aðrar fra peirri boor ${ }^{4}$ fem undir eru. par nooft fkalt pu hugfa huerffu mikít ena meiri figuru ${ }^{5}$ fkortír a tíu. pa er pu uilt marghfalda. Ok fua marghar einngar $\left.\right|^{6}$ fem afkortír a tíu. fua opt fkalt pu ena mínní toluna paa er pu $\left.\right|^{7}$ uilt margfaldda taka af tíghum hennar. ok at pu fkilir petta marg $\left.\right|^{8}$ faldda feau ok níu. Nío fkortír eín a tío. buí tak pu eína feau af 9 feautighum. pa uerda efttir prír ok fextíghí. bat eru feau fínnum $\left.\right|^{10}$ níu. At flíku fkapi mat pu aðrar tolur rỏyna. Margfalda hína ${ }^{11}$ fyftu Figuru retligha jallar poor er unðir ftanða. ok rita ifuir huerri ${ }^{12}$ Figuru pa margfaldan er hon hefuir oc til uinftrí ,handar, pat fem eigi ma ${ }^{13}$ ifuir henní 〈standa〉 í noofta ftad með uidlaghníng rettrí. ok pa er peffi figura ${ }^{14}$ er margfolðut foor ena yzftu af peim fem undir ftanda. Vndir nooftu $\left.\right|^{15}$ figuru ok margfaldda uíd pan fua fem vid en n fyrra: ok ef margfalddan gefuir ${ }^{16}$ per líd fet cífru ifuir uppi ok fkipa lidnum till vínftri handar. En ef $\mid{ }^{17}$ booðe uerðir af. margfalddir fíngir ok liðir. pa ríta fíngir ífuir peirri \mid talu \mid Figuru $\left.\right|^{18}$ er pu margfalddadír. en lid j ennoofta ftað. En ef fíngir eín uerdir af mar ${ }^{19} g f(a l d a n)$ pa ríta han ifuir uppí. Ef cifra er i enne ơfre tolu pa laup ífuir hana $\left.\right|^{20}$ puí at ekkí er hennar margfalddan. Perff fkal en ok gá. at taka af $\left.\right|^{21}$ figurur boor fem uppí eru ífuir fettar íamfkíot huería fem pu. hefuir marg| ${ }^{22}$ faldat. ok rita pan fíngir j ftad huerrar fem till hỏyrír edir cífru ${ }^{23}$ ef pat er rettarra. En legh pat uid

45 14r/25 helmngh] should be helmingh (helming in Hauksbók).
$46 \mathbf{1 4 r} / 26 \mathrm{ftadin}]$ is missing context. Here, and in Hauksbók, some text is missing. The instruction to fet cifru j fadin evidently refers to the case when a one is in the first place.
hínar er till vínftra uegs ${ }^{24}$ ftanda fem af lỏypir. ef cifra ftendir ífuir beirri figuru er pu margfalðar $\left.\right|^{25}$ ba tak hana af. ef fingir uerdir. oc margfallda. ${ }^{47}$ ella ftanðe hon kyr ${ }^{26}$

Ef pu grunar huart pu hefuir ret margfaldað. ba fkipt j ${ }^{27}$ fundir alla toluna vm margfalðan. bat er fu tala er undir ftod. oc $\left.\right|^{28}$ mant pu fa hína fomu tolu oc fyrft hafðír pu. 定

Ef pu uilt ${ }^{29}$ fkípta j fundir tolunne pa rita tuennar raðír ftafanna ok ríta vndir $\mid{ }^{30}$ ena mínne toluna. ok fkal en meírí tala uera halfu meírí eðir priu ${ }^{31}$ flik. eðir meírí munir.

Set pu ena Fremrrí ${ }^{4}$ figuru pa er unðir ftendir ${ }^{32}$ gengt enne fyrftu. ífuir uppí. ok aðrar til hỏgre handar iamfram ${ }^{33}$ fem $p^{`} o^{\prime} \mathrm{r}$ enðaft er undir ftanda. par nooft hugfa pu vm huerffu opt hin ${ }^{34}$ fyftí fíngir er i oc einum ofra. fua at íafn opt fe poor er fylgía [15r] henní huer j peirri tolu er ifuir ftendir ok fet pu pan fíngir gengt enne $\left.\right|^{2}$ yzftu figuru er undr ftendir ok po uppi ífuir baðar raðír . Tak fidan ena β^{3} fyrftu af enní fyrftú figuru ok par nooft hueria at hendi íafn opt af enne $\left.\right|^{4}$ obfrí taulu. En ef ein tala er undir pa tak hana af enne obfre $\{$ en $n \nmid \mathrm{n}||\mid 5$ tolunne. Par nooft flyt alla tolu pa er undir ftendir vm eín ok fín $\left.\right|^{6}$ annan quocíens $o k$ fet pan hía hinum fyfta ok tak hína neðre tolu fua $\left.\right|^{7}$ opt af enne obfre ok ger at fama hootte fua opt fem parf. Ef pu $\left.\right|^{8}$ mat eígí ena \mid neðrił tolu eðir figuru fínna j enne obfre pa fet pan ${ }^{9}$ fíngir er undir ftendir fremftir nooft enní fyrftu ok aðrar at fama $\left.\right|^{10}$ hootti tíll hỏgre handar ok fín fidan quociens eptir flikum hootte ok ${ }^{11}$ för afttir figurur fem parf ok ríta alla fama quociens ifuir uppí fua marga ${ }^{12}$ fem parf. En ef cifra ftenðir niðri unðir ba laup ifuir hana. pui at ${ }^{13}$ ekki ma henní fkipta. Pa er pu kemir vndir ena yðftu figuru. oc $\left.\right|^{14}$ hefuir hínnne ${ }^{49} \mathrm{fkipt}$ mat pu ekki lengir fkipta. oc goot pu pa peirrar ${ }^{15}$ tolu er eftir ftendir ef hon er nokkur. Ef pu uilt profua huart pu ${ }^{16}$ fkiptír ret pa margfalda pa tolu er undir ftod uid quociens. Oc ${ }^{17}$ mant pu fa fomu tolu ok fyft hafðír pu. En ef nokkot líop fram af j ${ }^{18}$ fkíptíngh pa leg bat uíd fíðan er margfaldað er ok mant pu finna hína fomu, tolu , ${ }^{19}$
, P, a er pu leiðir eína huería tolu ok margfalddar í fealfua ${ }^{20}$ fik. heitir fu tala ferfkỏyt edir quadrans. oc en fyfta tala fu er $\left.\right|^{21}$ pu margfalðar heitir rot.

47 14v/25 oc margfallda] possibly should be af margfalldan (Hauksbók has oc margfallda as well).
48 14v/31 Fremrrí] apparently corrected from meírí.
49 15r/14 hínnne] Hauksbók has henni.
oc er huer tala rot unðir nokkoro 'ri' tolu ${ }^{22}$ En eígí er huer tala ferfkzyt. Ef pu uilt rot fínna undir nokkor ${ }^{23}$ rí tolu. pa ríta fyft flika tolu er per likar. ok i enu m fyfta víofn $\left.\right|^{24}$ num ftad rita undir fingir pan er pu leidír j fealfuan fik. ok takí ${ }^{25}$ af pat er ifuir uppi er eðir fua fem nooft ma han ganga. Siðan tuefal $\left.\right|^{26}$ da pu pan fama fíngir. oc heitir pat dupl. tak pa up fíngrín. oc $\left.\right|^{27}$ heítir han fubðupl. goot pu fubdupls. en ríta dupl í noofta ftað ef pat ${ }^{28} \mathrm{er}$ fíngir. en ef li̊ðir er pa rita par fem fíngrín fyrrí ftoð ok fet cí $\left.\right|^{29}$ fru firir. ella fíngir. ef famfet tala. Fín fiðan nyían fíngir oc 〈leið \rangle han $\mid 3^{\circ} \mathrm{j}$ ðupl. oc tak af enne offre tolu pa tolu er pu margfaldadír. Sidan $\mid{ }^{13}$ margfalda pu fíngir j fealfuan fik ok tak pa tolu af enne ofre β^{32} gengt fealfuu m honum. par nooft tuefalda pu fíngrín ok goot hans med 133 fyrra subdupli. ok fet dupl j noofta ftað fem fyr. Fín par nooft ${ }^{34}$ nyian fíngir ok leid j duplín booðe famt. ok flytir ${ }^{50}$ duplet fyrra [15v] at hinu duplí um eín ftað. ok leg par uid ef par ftod lidir fírír $\left.\right|^{2}$ af hinu duplinu. Margfalða pa nyian fíngir j booðe đuplin. ok β^{3} tak pa tolu af enne obfre gengt duplino. Ger at fama hootte $\left.\right|^{4}$ fua opt fem parf. ok leid nyian fíngrín j aul duplín. ok flyt pau ${ }^{5}$ eftir aualt vm eín. par til er pu kemir j enn ydfta ftad. Ef upp $\left.\right|^{6}$ gengir oll fu talan er pu ritadir i fyrfunne. pa uar fu tala $\mid 7$ ferfkobyt. En rot vndir peirri tolu eru fingir allir faman n beir $\left.\right|^{8}$ er pu tuefalðaðir. me \not fidarfta fingrinum beim er pu fant. $\left.\right|^{9}$ Margfalda pu rotína j fealfua fik $o k$ mant pu hafua hina $\left.\right|^{10}$ fumu ${ }^{51}$ tolu fem j fyftu ef bu gerdír ret. Ef af loypir tolunne ${ }^{11}$ nokkot pa er pu dreghr rotina undan. pa uar fu tala eígí fer ${ }^{12}$ fkobyt ok leg pu pa tolu uid hina er pu margfalddír rotina till ${ }^{13}$ oc man pu fa ena fyftu toluna ok er fu tala ol faman rotín oc ${ }^{14}$ af laup rot meiri tolu. En ef fyfti ftadir beirrar tolu er pu ${ }^{15}$ ritadir uar iafn pa fín fíngir undir nooftu figuru ok margfal| ${ }^{16} \partial_{a}$ a fomu leid.

```
S
```

Ef pu margfalðar retligha pa leid fer ${ }^{17}$ fkoyytta tolu j fealfua fik. ok fu tala er af beirri margfaldan cemir $\left.\right|^{18}$ heitir cubícus edir uerpilf tala. hun er alla uega íam mikil. En $\left.\right|^{19}$ rotin undir cubico uar en fama. ok ferfkỏyttrar tolu. huer ${ }^{20}$ rot er ${ }^{52}$ nokkorrar uerpilf tolu edir cubící en eígí er huer tala ${ }^{21}$ cubicus.

50 15r/34 flytir] Hauksbók has flyt here, which is the correct imperative.
51 15v/10 fumu] Hauksbók has fomu, that is, sǫmu, here, as does GKS 1812 elsewhere.
52 15v/20 hver rot er] text is corrupt. The correct reading, namely, hver tala er rot, is found in Hauksbók. Here ".b." is written above rot and ".a." is written above er, indicating that the word order should be inverted.

Ef pu uilt finna \langle rot $\rangle\rangle^{53}$ vndir cubíco．hugfa huerffu mikil $\left.\right|^{22}$ tala er．ok huerffu margir ftadír ero．Fín par nooft fingir ${ }^{23} \mathrm{j}$ enum fremfta pufunda ftað．Pufunda ftaði kollum uer ${ }^{24}$ pa alla er um pufundir eínar bríotaft．pat er en fiordí ${ }^{25}$ oc en feau〈n〉dí ok en tiundí ok en prettandí ok af afalt $\left.\right|^{26}$ loypir ifuir tua ftadi．

Fra uinftrí hendi 1 k al pu petta ${ }^{27}$ uerk uphefuía．leid pan fíngir er pu fant j fik cubice ${ }^{28}$ pat er tuifvar finnum margfaldað fyrft j fealfan fik ${ }^{29}$ oc annat fín j ba tolu er par kom af．ok par nooft［ta］k af ${ }^{30}$ offre tolu peffa tolu alla gengt fíngrinum beim fealf［um］．Oc $\mid{ }^{31}$ prefalda par nooft fíngrín．ok hoppa ifuir eín ftad með pa $\left.\right|^{32}$ tolu ok fet j pridía ftað firir hínum pa toluna ef pat er ${ }^{33}$ fíngir．En ef pat er lidir fet par cífru en lidín j noofta ${ }^{34} \mathrm{ftad}$ ． En ef famfet tala er pa fet fíngrín j fama ftad．${ }^{35}$ en líd et noofta．Par nooft fín nyían fíngir j noofta ftad［16r］brefaldrí tolu er tripl heitir ok leid han meə hinni figuru er fyft fant pu $\left.\right|^{2}$ Ok uer kollum fubtripl oc a hỏgra uegh henni j triplit með margfal｜${ }^{\text {ð }}$ an．ok par nooft leid han ein faman i pa tolu er af margfaldan kom $\left.\right|^{4}$ oc uer kollum productum．Tak pa peffa tolu alla famt af enni ỏfrí ${ }^{5}$ gengt pui er tripl ftod．pui nooft leid fingir pan fama i fealfuan fik cu｜${ }^{6}$ bice．oc tak pa tolu af enni obfri gengt fealfum fingrinum．Tak pan ${ }^{7}$ fingir af ok prefalda her fem enn fyrra ok fin pa nyian fingir．Leið $\left.\right|^{8}$ han með baðum fubtriplinn oc triplin famt．oc flyt afalt triplin ${ }^{9}$ fornari eptir fem pu gerir i minna rotardrat uið dupl．nema her $\left.\right|^{10} \mathrm{fkalt}$ pu afalt ifuir ein ftad hoppa en leggia po at fama hootte tripl $\mid{ }^{11}$ uid tripl meə rettri uidlag－ ningh Far fram at fliku hofui meðan $\left.\right|^{12}$ parf oc pu kemir j yðfta ftad．En pat fkalt pu með mikilli uanðuircð $\left.\right|^{13}$ huxa pa er pu finnir fingirna at peir taki eigi fua mikit af offri tolu ${ }^{14}$ at fu tala hafin ${ }^{54}$ eigi ftað er pu margfaldar tripl－ in till．eðir hín ${ }^{15}$ onnur er pu margfaldar fingrin till pan fiðarra．Varðueit pu afalt $\left.\right|^{16}$ fubtripl me $\begin{gathered}\text { tripli．goot beff ok ef cifrur koma．j fubtrípl at engi }\end{gathered}$ $\mathrm{e} r \mid{ }^{17}$ margfaldan edir prefaldan peirra．en halda poor ftoðum finum meðan nok ${ }^{18}$ kur figura er till hỏgre handar beim．Ok er bat vuanðast j vidirlagh－ níng ${ }^{19}$ tripls．afalt fer bat fem fyr er rítat j viðrlogho lift．

Fíngir allír $\left.\right|^{20}$ famt beir er fubtripl voro ok yztir fíngir með ero rot enn－ ar meirí tolu $\left.\right|^{21}$ peirrar er pu ritaðir fyft ef up gek oll talan j af droottinum ok marg｜${ }^{22}$ falda pu fubtriplin \mathfrak{j} fealfuan fik cubíce．ok mun pu finna hína fyrftu ${ }^{23}$ tolu．En ef aflíop nokkot tolunní j afdrootti．pa er fu tala eígi

[^4]cubícus ${ }^{24}$ En po er aflaup pat með fubtríplum rót nokkurs cubící. Oc ef pu mar ${ }^{25}$ gfaldar rót ena mínní. cubice. oc leg uíd pa tolu er af margfaldan ${ }^{26}$ kemir aflaupít. oc mant pu fa fyrftu tolu er pu rítaðír Oc nu rí| ${ }^{27}$ tum uer at finne eigi fleíra par af.

Beffar eru fíngra margfal ${ }^{28}$ danar ferfkỏyttrar. af. 3. 9. quaðratus. af 2 4. Af .4. 16. $\left.\right|^{29}$ quaðratus af. 525 quadratus. Af .6. 36. quadratus. Af .7. .49. quadratus ${ }^{30}$ Af .8. 64. quadratus. Af .9. 81. quadratus. Oc er fu lift till at finna fíngra ${ }^{31}$ margfaldanir fem ritud er fyr. Peffi er fingra margfaldðan cubice $\left.\right|^{32} 3$ rot 27 . cubus. 2 rot 8 . cubus. 4. rot 64 cubus 5 rot .125 . ${ }^{33}$ cubus .6. rot 216. cubus. 7. rot .343. cubus. 8. rot 512. cubus ${ }^{34} 9$ rot 729 cubus.

Huer ferfkỏyt tala hefuir tuoor moolíng| ${ }^{35}$ gar pat er breíd ok lengð. En cubicus tala hefuir prenna moolíngh. pat [16v] er breíd ok lengð ok pycð edir hooð. Oc pui kalla fpekíngar huern fynilighan $\left.\right|^{2}$ likama með peffi tolu faman fettan. at han hefuir. jamnan ${ }^{55}$ peffa moolíngh $\left.\right|^{3}$ prenna.

Með pui at elif ${ }^{56}$ fpeki. oc ein gud uilde heimin fyinlighan ok ${ }^{4}$ likamlighan fkapa. pa fetti han fyrft tuœor ennar yðftu hofuðfkempn|5nur eld ok jord. pui at ekki ma naturuligha fynilight vera uttan poor $\left.\right|^{6}$ Par sem elddir gerir liof ok röringh. En jord ftaðfefti ok hald. En $\left.\right|^{7}$ með pui at pau hafua prenna víamnna huiligleika ok gangftadlígha $\left.\right|^{8} \mathrm{pa}$. uar naturuligh naudfyn at fetia nokkot milli peirra pat er fambykttí ${ }^{9}$ peirra vfootti. Ok fem fyr er faght at elddir ok jord ok pat alt fem likam| ${ }^{10}$ light er er ${ }^{57}$ með prefaldre tolu er uer kollum cubicum faman fet ${ }^{11}$ pa ritum uer peffa tua cubus. Ritum uer jordina peffa leið. Tuifuar ${ }^{12}$ finnum tueir tuifuar. 248.

En eldin fua bryfuar prír bryf $\left.\right|^{13}$ uar. 3927.
En með pui at ekki eít mídfkeid ma milli peffarra ${ }^{14}$ talnna eínna pat er jamre luttegníngh hóyrír till huartueggia. $\left.\right|^{15}$ ok engra annarra tueggia cuba. pa finnum uer tuoor lutfellíngar ${ }^{16}$ tolur a peffa lunð. leidum rot enf meira cubs j quadratum ens ${ }^{17}$ mínna ${ }^{58}$ cubs pat er tuyfua tueír pryfuar. 24. 12. Oc rot enf minna ${ }^{18}$ cubs \mathfrak{j} quadratum ens meira cubs peím ${ }^{59}$ er pryfuar prír tuyfuar ${ }^{19} \cdot 39$. 18. Peffar tuoor tolur hỏyra íafnt til tueggía hinna enu ydftu $\left.\mathrm{cu}\right|^{20} \mathrm{~b}$. puí at feau ok.xx. hafua j fer. 18. ok helmíngh af .18. En .18. hafua ${ }^{21} \mathrm{j}$ fer .12. ok helmíngh af .12.

55 16v/2 jamnan] Hauksbók has avallt.
56 16v/3 elif] Hauksbók has the correct eilif.
57 16v/10 er er] Hauksbók has er. pa er.
$58 \mathbf{1 6 v} / 17$ mínna] appears to be corrected from meíra.
59 16v/17 beím] Hauksbók has peim as well, but both Finnur Jónsson and Munch correct to pat.

Sua hafua ok ．12．j fer ．8．ok helmíng $\left.\right|^{22}$ af ．8．at fama hootti fkalt pu afalt luttekníngar finna millí $\left.\right|^{23}$ tueggía cuba．

Sua fkipadí gud tuennar hofutfkepnur millí eldz ${ }^{24}$ ok íarðar．lopt ok vatn．oc hefuir uatn tua huiligleika af íorð oc $\left.\right|^{25}$ tuoor tolur．En af elddí eín huiligleik ok eína tolu．

En lopt $\left.\right|^{26}$ hefuir tua huilighleika af eldí ok tuoor tolur．En eín af íorð ok $\left.\right|^{27}$ eína tolu．Oc er elddir puí lettarí en lopt fem ．27．eru meí｜${ }^{28}$ rí en .18 ．

En lopt puí lettarí en uatn fem ．18．eru meírí en ．12．${ }^{29}$ vatn pui lettara en jorð fem ．12．eru meirí en ．8．

Petta 〈er〉ful ${ }^{30}{ }^{\text {lígar at }}$ fkilía ${ }^{60} \mathrm{j}$ peirri figuru er her er fiðar gor oc koll－ ud er cubus $\mid{ }^{31} \mathrm{PErFectus}$

Translation of the Algorismus in GKS 1812 4to

［13v］This art is called algorismus．First discovered by men of India，they used ten characters，which are so written： 098765432 1．The first character denotes one in the first place，the second two，the third three， and each according to how it is placed until the last，which is called a cipher． You shall write these characters from right to left as in Hebrew．

Each character denotes itself simply in the first place．But if it is in the second place，then it denotes X times itself．And in each place that you place some figure，then it always denotes ten parts more with respect to that place which points to the left，relative to the next place before．The cipher denotes nothing in itself，but it creates a place and gives the previous figures signification．

Next it is appropriate to know a three－fold distinction of the characters and of every number．Every number which is less that ten is called a dig－ it．${ }^{61}$ Every number which is made from groups of ten is called an article，${ }^{62}$ whether it is bigger or smaller．But a number that is both an article and a digit is called a compound number．${ }^{63}$

If you want to write some number，then examine if it is a digit and 60 16v29－30 Petta〈er〉fullígar at skilía］Hauksbók has Ma p〈et〉ta fvlligar skilia．
61 Literally，＂finger．＂
62 Literally，＂joint＂；Latin＂articulus．＂
63 Samsett tala，literally＂composite number，＂is rendered as＂compound number＂to avoid confusion with the conventional definition of a composite number．
write in the first place any figure such as needed, for example, 8. But if you want to write an article, then put a cipher before the figure, like this: 70. If you want to write a compound number, then set the figure ${ }^{64}$ before the article, as here: 65 .

A number is even if is made from groups of ten or if an even digit is in the front. A number is odd if the digit in front is odd. There are four even digits: $2,4,6$, and 8 . And the other four are odd digits: $3,5,7$, and 9 . But one is neither [even nor odd] because it is not a number but rather the origin of all number. 65

There are seven branches of this art. The first branch is called addition, the second subtraction, the third doubling, the fourth dividing in half, the fifth multiplication, the sixth division, and the seventh to take a root. And there are two branches for this: One is to take a root of a squared number and another type is to extract a root from an octagonal number ${ }^{66}$ which has the shape of a cube ${ }^{67}$.

From the right you should take away from, add, and divide in half. From the left you should double, divide, multiply, and also extract both types of root.

If you want to add one number to another, then write the larger number above and set the smaller number even to it on the right. Then first add the figure [14r] up to the number which is farthest out to the right. And if this entire number is a digit, then write it in the same place. But if the number is a compound, then write the digit in the first place and add the article to that number which is in the next place before. But if an article results from the addition, then write a cipher in the first place and add the article to that number which stands next if some number is there, or, else, write it there alone. But if there is a cipher there, then remove it and set the article down there. Then add the other figures in the same way.

If you want to take one number away from another number, then write the two numbers as in addition and always set the smaller number below, otherwise even. Then you take away from the first figure the number that stands below if it is possible and, if something is left, write that in same

65 "Unity is the natural starting point of all number," from Nicomachus, Introduction to Arithmetic, ed. Martin Luther D'Ooge (New York: The Macmillan Company, 1926), 192.
66 Literally, "eight-cornered number" (átthyrnd tala).
67 verpill, or, in German, Würfel.
place, or, else, put a cipher there. But if you cannot take away the first figure as that number which stands below is greater, then take one from the next figure and carefully note that this makes ten [added to the figure] in the first place. Then take from this the entire number as is below and [write] what remains in the same place. And if ciphers stand over above, then take one from that figure which stands next to the ciphers and write nine where the ciphers were, all the way until you come to the place where you want to take away from. And you will take from them ten as needed and write what is left in the same place.

If you want to double some number, then first write such number as you like. Next you double that figure which is farthest to the left hand and write in the next place that which remains as in addition. But if semis ${ }^{68}$ stands over above in the outermost place, then add one since before there was an even ${ }^{69}$ number which was divided in half.

But if you want to take half of a number, write such number as you want and take half of the first figure if it is even. But if it was odd, then divide in half that which remains from one less, take up the one and write over above that character which denotes half of any part, ${ }^{70}$ which we call semis and make so ψ, and [if it is one, remove it and] ${ }^{71}$ put a cipher in that place. Next take half of the second figure in the same way if it is even. But if it is odd, then take half from that which is even and just under that and make from this five, which is half of ten, in the place next to that. But if one stands in the second place, then take it up and write five in next place and put there a cipher where the one stood. A cipher does nothing unless some figure stands to the left of it. Now proceed forward in such way for as many figures as there are.

68 Latin for "a half-unit"; see Charlton Thomas Lewis and Charles Short, eds. Latin Dictionary. (Oxford: Clarendon Press, 1969).
69 This is clearly an error, which appears as well in Hauksbók (but not in AM 685 d 4to). The text is referring to the case in which the given number was the result of halving a previous number, resulting in a remainder of one-half. Hence the original number must have been odd ("óiofn"), not even ("iofn").
70 "Take up the one" refers to the one removed from the initial odd number. In some texts of the Indian calculus, the remainder one is written above the final digit of the result; here, a semis is written instead.
71 This text is missing both in GKS 1812 and in Hauksbók but is needed to explain that this instruction applies only to the case in which the first digit is a one.

If you wish to multiply $[\mathbf{1 4 v}]$ one number by another, write the two rows of characters in that way that the outermost figure of that number which you multiply stands under the first character of the upper number, and each of the others of the lower number are to the left. Next you shall consider how much the larger figure which you want to multiply lacks from ten. And as many units as are lacking from ten, that is how often you should take the smaller number, that you want to multiply, from that number of tens. ${ }^{72}$ So that you understand this, multiply seven and nine. Nine is one less than ten, therefore you take one seven away from seventy, and then sixty-three remains. That is seven times nine. In the same manner you can attempt other numbers. Multiply the first figure correctly with each figure which stands under and write above each figure the multiple that it has, and to the left that which cannot be over it in the next place using correct addition. Then when this figure is multiplied, move the outermost of those that stand below under the next figure and multiply with that as with the first. And, if multiplication makes it an article, set a cipher over above and arrange the article to the left. But if both a digit and an article result from the multiplication, then write the digit over that figure which you multiplied and the article in the next place. But if only a digit results from the multiplication, then write it over above. If a cipher is in the upper number, then skip over it because nothing is a multiple of it. And also take care of this, that you remove those figures as are put above as soon as you have multiplied each, and write that digit in the place as belongs to each or a cipher if that is correct, and add that to that which stands to the left side as remains. If a cipher stands over that figure which you multiplied, then remove it if it becomes a digit after multiplication, 73 otherwise leave it standing in place. If you doubt whether you have multiplied correctly, then divide apart the whole multiplied number with that number which stood under. And you will get the same number as you had first.

If you want to divide apart some number, then write the two rows of the characters and write the smaller number underneath. The larger number must be two, three, or more times greater. Set the foremost figure that stands under aligned with the first above and the others to the right, continuing as long as the ones underneath last. Next think about how

[^5]often the first digit also is in the upper number so that equally often those which follow [15r] it are each in that number which stands over. Set that digit aligned with the outermost figure which stands under and yet above both rows. After that take the first from the first figure and each after the other equally often from the upper number. But if one number is under, then take it from the upper number. Next move each number that stands under over by one [place] and find another quotient. Set that by the first and take the lower number as often from the upper. Do that the same way as often as needed. If you are not able to find the lower number or figure in the upper, then set the foremost digit which stands underneath next to the first and others in same way to the right and then find the quotient in such a way, and move along the figures as needed. And write each of the quotients together above so many as needed. But if a cipher stands under, then skip over it because one cannot divide by that. Then when you come under the outermost figure and have divided it, you can no longer divide and then be careful to observe that number which remains, if it is anything. If you want to prove whether you have divided correctly, then multiply that number which stood under with the quotient and you will get the same number that you had at first. And if something remained after the division, then add that afterwards to what is multiplied and you will find the same number.

When you take any number and multiply it by itself, that is called a square, or a quadrate, and the first number which you multiply is called a root. Each number is the root of some number, but not every number is a square. If you want to find the root of some number, then first write such number as you like. And in the first place, which is odd, write under it the digit which you multiplied by itself, and take from that which is above or such as comes next to it. After that you double that same digit and that is called a duple. Then take away the digit and that is called subduple. Note the subduple and write the duple in the next place if it is a digit, but if it is an article write it where the digit stood formerly and set a cipher before it, or else a digit if it is a compound number. After that find a new digit, multiply it with the duple, and take from the upper number that number which you multiplied. After that multiply the digit by itself and take that number from the upper aligned over it. Then next double the digit, note it together with the former subduple, and set the duple in the next place as
before. Then find the next new digit, multiply it with both duples at once, move the former duple [15v] towards the other duple by one place, and add it there if an article remained there from that duple. Then multiply a new digit with both the duples and take that number from the upper aligned to the duple. Do this in the same way as often as needed, multiply the new digit with all the duples, and move those always over one until you come to the outermost place. If all of that number is used up which you wrote at the beginning, then that number was a square. And the root of that number is made up of the digits all together which you doubled together with the last digit which you found. Multiply the root by itself and you will have the same number as at first if you have worked correctly. If some of the number remains after you extract the root, then that number was not a square. And you add that number to that which you multiplied the root and you will get the first number. And that number together, the root and remainder, is the root for the larger number. If the first place of that number which you wrote was even, then find a digit under the next figure and multiply in the same way.

If you multiply correctly, then multiply a square number with itself and that number which comes from this multiplication is called a cubicus, or cubic, number. It is the same size on all sides. Moreover, the cube root is the same as for the square number: Each number ${ }^{74}$ is the root of some cubic number, or cubicus, but not every number is a cube.

If you want to find a cube root, note how big the number is and how many places it has. Then find the nearest digit in the farthest of the thousands place. We call places of the thousands all those which break only into thousands. That is the fourth, the seventh, the tenth, the thirteenth, and always jump over two places.

You shall start this work from the left. Multiply that digit which you found with itself cubically. That is twice multiplied, first by itself and a second time by that number which came from there. And next take from the upper number this entire number aligned with that digit itself and next triple the digit, skip over one place with that number, and set that number in the third place before it if it is a digit. But if that is an article, set there a cipher and the article in the next place. And if it is a compound number, set the digit in the same place and the article the next. Next find a new

Hauksbók has tala here, which is missing in GKS 1812.
digit in the next place, $[\mathbf{1 6 r}]$ treble the number, which is called a triple, and multiply it with the figure which you found first, and which we call subtriple, and to the right of it multiply it with the triple. And then multiply it alone with that number which came from the multiplication, which we call the product. Then take this number as a whole from that upper one aligned over where the triple stood. Next multiply that same digit in itself cubically and take that number from that aligned over the digit itself. Take that digit and triple it here as the former and then find new digit. Multiply it with both the subtriple and the triple together and always move the older triple along as you do in smaller root extraction with duple, except here you shall always skip over one place and add still that same way triple to triple with correct addition. Continue in such way as long as needed and you come to the outermost place. And you shall with great care attend to, when you find the digits, that they not take so much from upper number that that number has 75 no place when you multiply the triple or the other numbers when you multiply the later digit. Always keep subtriple with triple. And note that if ciphers come in a subtriple, nothing is a multiple or triple of them, but they keep to their own places as long as some figure is to the right of them. And what is least difficult is the addition of a triple, so that it always goes as written before in the addition art.

All the digits together, those which were subtriples and the outermost digits too, is the root of the larger number of that which you first wrote if the subtractions used up the whole number. And you multiply the subtriples by themselves cubically and you will find the first number. But if there is some remainder to the number after subtraction, then that number is not a cube. But still the remainder, with the subtriples, forms the root of some cube. And if you multiply the root of the smaller cubically and add the remainder to that number which comes from the multiplication, you can get the first number which you wrote. And now we write at the present no more about this.

These are the digits squared: 3 squared is 9,2 squared is 4,4 squared is 16,5 squared is 25,6 squared is 36,7 squared is 49,8 squared is 64,9 squared is 81 . And the art to find the digits multiplied is as written before. These are the digits cubed: 3 cubed is 27,2 cubed is 8,4 cubed is 64,5 cubed is 125,6 cubed is 216,7 cubed is 343,8 cubed is 512,9 cubed is 729 .

75 GKS 1812 has bafin here, but Hauksbók has bafi.

Each square number has two dimensions, that is breadth and length. But a cubic number has three dimensions, that [$\mathbf{1 6 v}$] is breadth, length, and thickness or height. And therefore the sages say every visible body is put together with this number for it always ${ }^{76}$ has these three dimensions.

Since eternal wisdom, the one God wanted to create a visible and bodily world, then he first made two of the outermost elements, fire and earth, because nothing can be naturally visible without them, as fire makes light and movement, but the earth is steadfast and unmoving. And since they have three unequal and opposite qualities, it was then a natural necessity to set something between them which reconciled their differences. And since, as said before, fire and earth, and every such thing that is of a bodily nature is composed out of a three-fold number, which we call cubic, then we write for this two cubes. We write the earth this way: twice times two twice, $2,4,8$. But fire so: thrice three thrice, 3, 9, 27.

And since in this case no single mean 77 can be between these numbers, with only it being in equal proportion to both and of no other two cubes, then we find two proportional numbers in this manner: We multiply the root of the greater cube with the square of the smaller cube, that is twice two thrice: $2,4,12$. And the root of the smaller cube with the square of the greater cube, that is thrice three twice: $3,9,18$. These two numbers belong equally to the outer two cubes since seven and 20 has in itself 18 and half of 18 , and 18 has in itself 12 and half of 12 . And so has 12 in itself 8 and half of 8. You shall in the same way always find proportions between two cubes.

Thus God arranged two elements between fire and earth: air and water. And water has two qualities from earth and two numbers, but from fire one quality and one number. And air has two qualities from fire and two numbers, but one from earth and one number. And fire is as much lighter than air as 27 is greater than 18. And air is as much lighter than water as 18 is greater than 12 . Water is as much lighter than earth as 12 is greater than 8.

This is to be more fully understood in that figure which is made here later and is called the cubus perfectus. ${ }^{78}$

76 GKS 1812 has jamnan here, but Hauksbók has avall.
77 miðskeið
78 This work is derived from my MA thesis in Medieval Icelandic Studies at the University of Iceland. I would like to thank Gunnar Harðarson for his encouragement, suggestions, and careful reading of the transcript and translation. His corrections have greatly improved

B I B LIOGRAPHY

MANUSCRIPTS

Stofnun Árna Magnússonar í íslenskum freдum, Reykjavík
GKS 1812 4to, 13v-16v. [handrit.is: https://handrit.is/en/manuscript/view/ is/GKSo4-1812; digitalesamlinger.hum.ku.dk: http://digitalsamlinger.hum. ku.dk/Home/Samlingerne/33608]

Den Arnamagneanske Samling, Institut for Nordiske Studier og Sprogvidenskab, Københavns Universitet, Copenhagen

AM 544 4to, 90r-93r. [handrit.is: https://handrit.is/en/manuscript/view/ en/AMo4-0544]
AM 685 d 4to, $24 \mathrm{v}-29 \mathrm{r}$. [digitalesamlinger.hum.ku.dk: http://digitalsamlinger.hum.ku.dk/Home/Samlingerne/8043]
AM 736 III 4to, 4r-4v. [digitalesamlinger.hum.ku.dk: http://digitalsamlinger.hum.ku.dk/Home/Details/148601]

PRIMARYSOURCES

Hauksbók. Ed. by Finnur Jónsson and E[iríkur]. Jónsson. Copenhagen: Thieles Bogtrykkeri, 1892-96.
Muḥammed īn Mūsā al-Khwārizmī: Le calcul indien (Algorismus). Ed. by André Allard. Namur, Belgium: Société des Études Classiques, 1992.
Nicomachus. Introduction to Arithmetic. Ed. by Martin Luther D'Ooge. New York: The Macmillan Company, 1926.
Petrus de Dacia. Petri Philomeni de Dacia In Algorismum Vulgarem Johannis de Sacrobosco Commentarius. Ed. by Maximilianus Curtze. Copenhagen: A. F. Host \& Fil. Bibliop. Reg., 1897.

- - -. Petri Philomenae de Dacia et Petri de S. Audomaro Opera quadrivialia. Ed. by Fridericus Saaby Pedersen. Copenhagen: Societas Linguae \& Litterarum Danicarum, 1983.
Rara Mathematica. Ed. by James Orchard Halliwell. London: John William Parker, 1839.
William of Conches. Guillelmi de Conchis: Glosae Super Platonem. Ed. by Édouard A. Jeauneau. Turnhout: Brepols, 2006.
both. I would like also to thank Pórdís Edda Jóhannesdóttir, who pointed me to the black-and-white images of GKS 1812 4to at the Institut for Nordiske Studier og Sprogvidenskab in Copenhagen and answered numerous questions about the manuscript, and Margaret Cormack, who made many helpful suggestions in smoothing out the English translation. Finally, I wish to thank the anonymous reviewers for their thoughtful comments and suggestions, and the editors of Gripla for sharing with me a partial transcript of the Algorismus in GKS 1812 prepared by Stefán Karlsson. Any errors which remain are mine alone.

SECONDARY SOURCES

Allard, André. "The Influence of Arabic Mathematics in the Medieval West." Encyclopedia of the History of Arabic Science, ed. by Roshdi Rashed. London: Taylor \& Francis, 1996, 2:514-55.
"AM 544 4to: Hauksbók; Iceland and Norway, 1290-1360." https://handrit.is/ en/manuscript/view/en/AMo4-0544.
"AM 685 d 4to." ONP: Ordbog over det norrøne prosasprog. Copenhagen: Den Arnamagnæanske Kommission. https://onp.ku.dk/onp/onp.php?m135.
"AM 736 III 4to." ONP: Ordbog over det norrøne prosasprog. Copenhagen: Den Arnamagnæanske Kommission. https://onp.ku.dk/onp.php?m136.
Bekken, Otto B. "Algorismus of 'Hauksbók': An Old Norse Text of 1310 on Hindu-Arabic Numeration and Calculation." Agder: Agder distriktshøgskole, 1986. https://web.archive.org/web/20070928032455/http://home.hia.no/ ~ottob/ALGORISMUS.pdf
Bekken, Otto B., and Marit Christoffersen. "Algorismus." Medieval Scandinavia: An Encyclopedia, ed. by Phillip Pulsiano and Kirsten Wolf. New York: Routledge, 2016, 8-9.
Bekken, Otto B., Marit A. Nielsen, and Steinar Thorvaldsen. Algorismus i Hauksbok: En norrøn regnetekst fra 1300-tallet. Tromsø: Eureka Digital, 2010.
Benedict, Suzan Rose. A Comparative Study of the Early Treatises Introducing into Europe the Hindu Art of Reckoning. Concord: The Rumford Press, 1914.
Bouzari, Abdelmalek. "The Calculus of Al-Khwārizmī." A World in Fragments: Studies on the Encyclopedic Manuscript GKS 1812 4to, ed. by Gunnar Harðarson with Christian Etheridge, Guðrún Nordal, and Svanhildur Óskarsdóttir. Forthcoming, 155-69.
Folkerts, Menso. "Early Texts on Hindu-Arabic Calculation." Science in Context 14, nos. 1-2 (2002): 13-38.
Gunnar Harðarson. "Medieval Encyclopedic Literature and Icelandic Manuscripts." A World in Fragments: Studies on the Encyclopedic Manuscript GKS 1812 4to, ed. by Gunnar Harðarson with Christian Etheridge, Guðrún Nordal, and Svanhildur Óskarsdóttir. Forthcoming, 13-38.
Gunnar Harðarson and Stefán Karlsson. "Hauksbók." Medieval Scandinavia: An Encyclopedia, ed. by Phillip Pulsiano and Kirsten Wolf. New York: Routledge, 2016, 271-72.
Hagland, Jan Ragnar. Riksstyring og språknorm: Spørsmålet om kongens kanselli i norsk språkhistorie på 1200-og første halvdel av 1300-talet. Dragvoll, 1984.
Haraldur Bernharðsson. "Scribes and Scribal Practice in GKS 1812 4to." A World in Fragments: Studies on the Encyclopedic Manuscript GKS 1812 4to, ed. by Gunnar Harðarson with Christian Etheridge, Guðrún Nordal, and Svanhildur Óskarsdóttir. Forthcoming, 63-113.
Kristín Bjarnadóttir. "Algorismus: Fornt stærðfræðirit í íslenskum handritum."

NETLA (2004). http://wayback.vefsafn.is/wayback/20201017180549/ https://netla.hi.is/greinar/2004/oo1/index.htm.
Kristín Bjarnadóttir and Bjarni V. Halldórsson. "Algorismus: Hindu-Arabic Arithmetic in GKS 1812 4to." A World in Fragments: Studies on the Encyclopedic Manuscript GKS 1812 4to, ed. by Gunnar Harðarson with Christian Etheridge, Guðrún Nordal, and Svanhildur Oskarsdóttir. Forthcoming, 171-91.

- - -. "The Norse Treatise Algorismus." Actes du 10ème Colloque maghrébin sur l'histoire des mathématiques arabes. Tunis: Association Tunisienne des Sciences Mathématiques, 2011.
- - -. "Ritgerðin Algorismus - samanburður handrita." Vísindavefur: Ritgerðasafn til heiðurs Porsteini Vilhjálmssyni sjötugum 27. september 2010. Reykjavík: Hið íslenska bókmenntafélag, 2010.
Lewis, Charlton Thomas, and Charles Short, eds. Latin Dictionary. Oxford: Clarendon Press, 1969.
"Menota Handbook 3.0." Menota Nordic Text Archive. Menota, 2019. https:// www.menota.org/HB3_ch4.xml.
Munch, P.A. "Algorismus, eller Anviisning til at kjende og anvende de saakaldte arabiske Tal, efter Hr. Hauk Erlendssons Codex." Annaler for nordisk oldkyndighed og historie, (1848): 353-75.
Seip, Didrik Arup. Norskspråkhistorie til omkring 1370. 2. utgave. Oslo: Aschehoug, 1955.
- - -. Paloografi: B Norge og Island. Nordisk kultur 28B. Stockholm: Albert Bonniers forlag, 1954.
Smith, David Eugene, and Louis Charles Karpinski. The Hindu-Arabic Numerals. Boston: Ginn \& Company, 1911.
Vágslid [=Vågslid], Eivind. Norske logmannsbrev frå millomalderen: Ei skrifthistorisk etterrøking av logmannsbrev frå Oslo, Uppland, Skien, Tunsberg, Borgarting og Bohuslän. Oslo: Det Norske Videnskaps-Akademi i Oslo, 1930.

Á GRIP

Algorismus í GKS 1812 4to: Uppskrift og býðing
Efnisorð: Algorismus, Carmen de Algorismo, GKS 1812 4to, Hauksbók, stafrétt útgáfa

Í pessari grein er birt stafrétt útgáfa peirrar gerðar Algorismus, norrænnar býðingar á Carmen de Algorismo eftir Alexander de Villadei (um 1170-um 1240), sem er að finna í alfræðihandritinu GKS 1812 4to 13v1-16v31. Sú gerð hefur ekki áður verið prentuð en hún hefur ýmis sérkenni, einkum skriftarfræðileg, svo og nokkur lesbrigði, sem greina hana frá peirri gerð sem áður hefur verið gefin út og byggist á AM 544 4to sem er hluti Hauksbókar. Einnig er hér birt fyrsta enska býðingin á Algorismus svo vitað sé.

S U M M AR Y

Algorismus in GKS 1812 4to: Transcription and Translation
Keywords: Algorismus, Carmen de Algorismo, GKS 1812, Hauksbók, diplomatic edition

This article provides a diplomatic edition of the Algorismus, an Old Norse translation of the Carmen de Algorismo of Alexander of Villedieu (c. 1170-c. 1240), found in the encyclopedic manuscript GKS 1812 4to 13v1-16v31. This version has not been published previously. It has various characteristics, most notably in the script as well as in some readings, which distinguish it from previous editions that were based on AM 544 4to, a part of Hauksbók. Also, included here is, as far as is known, the first English translation of the Algorismus.

Daniel Sloughter,
Professor of Mathematics Emeritus, Furman University
dan.sloughter@gmail.com

[^0]: 1 Kristín Bjarnadóttir and Bjarni V. Halldórsson, "The Norse Treatise Algorismus," Actes du 10ème Colloque maghrébin sur l'histoire des mathématiques arabes (Tunis: Association Tunisienne des Sciences Mathématiques, 2011), 69, and "Algorismus: Hindu-Arabic Arithmetic in GKS 1812 4to," A World in Fragments: Studies on the Encyclopedic Manuscript GKS 1812 4to, eds. Gunnar Harðarson with Christian Etheridge, Guðrún Nordal, and Svanhildur Óskarsdóttir (forthcoming), 189.
 2 The Carmen Algorismo appears in Rara Mathematica on pages 73 to 83.
 3 For background on these works, see Muḥammed ibn Mūsā al-Khwārizmī: Le calcul indien (Algorismus), ed. André Allard (Namur, Belgium: Société des études classiques, 1992).

[^1]: Borgarting og Bohuslän (Oslo: Det Norske Videnskaps-Akademi i Oslo, 1930), 39, and Didrik Arup Seip, Paleografi: B Norge og Island, Nordisk kultur 28B (Stockholm: Albert Bonniers forlag, 1954), 121.
 23 Op.cit., 110-12.
 24 Op.cit., 112. Here Haraldur cites Didrik Arup Seip, Norsk språkhistorie til omkring 1370, 2. utgave (Oslo: Aschehoug, 1955), 137-39, and Jan Ragnar Hagland, Riksstyring og språknorm: Spørsmålet om kongens kanselli i norsk språkhistorie på 1200-og første halvdel av 1300-talet (Dragvoll, 1984), 161-62.
 25 For more detail on the history of GKS 1812 4to and medieval Iceland encyclopedic works, see Gunnar Harðarson, "Medieval Encyclopedic Literature and Icelandic Manuscripts." For more on the scribes of GKS 1812 4to, see Haraldur Bernarðsson, "Scribes and Scribal Practice in GKS 1812 4to."
 26 "GKS 1812 4to, 13v-16v," digitalesamlinger.hum.ku.dk (Institut for Nordiske Studier og Sprogvidenskab), http://digitalesamlinger.hum.ku.dk/Home/Samlingerne/33608.

[^2]: 29 The algorithms for performing the operations of arithmetic in the Algorismus are, except for some details of implementation, essentially those still taught in primary schools today.
 30 See, for example, Menso Folkerts, "Early Texts on Hindu-Arabic Calculation." Science in Context 14, nos. 1-2 (2002): 13.

[^3]: $42 \quad 14 \mathrm{r} / 15$ cifrum] context indicates this should be cifrur.
 43 14r/21 iomfn] should be óiofn. This is clearly an error, which appears as well in Hauksbók (but not in AM 685 d 4to). The text is referring to the case in which the given number was the result of halving a previous number, resulting in a remainder of one-balf. Hence the original number must have been odd.
 44 14r/21 fkift] added below the line.

[^4]: 53 15r／21 〈rot〉］Hauksbók has the same omission．
 54 16r／v14 hafin］Hauksbók bas hafi．

[^5]: 72 The text does not mention for which cases this is a useful aid for multiplying digits.
 73 The text has oc margfallda, as does Hauksbók, but af margfalldan would make more sense.

